
DESIGNING A
SCALABLE, HIGH
AVAILABILITY AND
FUTURE-PROOF
PLATFORM
for Cloud native compute

2 Designing a scalable, high availability and future-proof platform for Cloud native compute

Introduction
Designing a scalable, high availability and future-proof platform is a
cornerstone for many cloud projects. A popular design pattern to
achieve this goal is a microservice architecture. In this architectural style,
a single application is architected as a set of multiple, loosely coupled and
independently deployable components called microservices. In order to
build and run enterprise level cloud native applications, cloud providers
offer services with modern technologies that are cost-efficient, fast
and reliable.

In Kubernetes, all microservices
are packaged into containers that
incorporate software code and all of
its dependencies into a standardized
unit. The container orchestration
and all configuration are managed by
Kubernetes which acts as a platform to
execute and run multiple and complex
container workloads. The second
option is to use serverless functions
that execute the software code. Cloud
providers allocate and manage the
underlying infrastructure on demand,
taking care of the servers on behalf
of their customers. A single Function
App can contain multiple functions
whereas each function corresponds to
a method in programming language.
Within microservice architecture, a
Function App corresponds to a single
microservice and can therefore scale
independently.

The existence of both options already
indicates that there is no silver bullet.
In the next chapter the readers will
find the necessary guidance to make
a well-founded decision between the
two approaches. A special focus is
on how to combine the advantages
of both approaches. The presented
solution allows you to start with
functions to minimize time to market
and then evolve into Kubernetes later
on. Turnkey solutions like Kubernetes
Event-driven Autoscaling (KEDA)
and Distributed Application Runtime
(DAPR) are discussed as well. KEDA
adds autoscaling in Kubernetes to

achieve parity between functions.
DAPR is intended as general
distributed application platform on
top of Kubernetes with support for
application patterns such as publish-
subscribe. It reduces integration
complexity and allows to reach beyond
Kubernetes due to its abstraction.
The base for this insight has been the
close collaboration with Microsoft and
Capgemini along with cloud project
experiences such as Microsoft gold
partner.

3 Designing a scalable, high availability and future-proof platform for Cloud native compute

Function Apps versus
Kubernetes
Function Apps come in various flavors
and Kubernetes is often combined
with other software such as service
meshes. A stricter definition regarding
the assumed configuration is therefore
needed. Function Apps can be based
on a consumption, premium or app
service plan. The App service plan
provides additional features which are
rather relevant for special cases such as
high-end scenarios.

Therefore, Function Apps in this paper
refer to the maximum functionality
resulting from the consumption and
premium plan only. Service meshes
focus on simplifying the internal
communication between containers
in Kubernetes. Function Apps do not
come with orchestration support
anyway and therefore service meshes
are not relevant for this comparison.

The focus of the comparison is on differentiators, since they decide which option to
go for. Areas with comparable support are as follows:

• Security

Both services provide configurations that minimize the attack surface. Function
Apps benefit from the managed infrastructure and additional features such as
private deployment. Azure Kubernetes Services also allows rich security features
coming out-of-the-box, e.g. by using the private cluster option.

• Local Deployment

Both can be run on-premises to reduce costs (Kubernetes via Minikube, Azure Stack,
OpenShift; Function Apps in multiple ways as downloadable software).

• Scalability

Both provide scaling out-of-the-box. Scaling in Kubernetes comes with several
options that require thorough design considerations. Options include manual
versus automated scaling and scaling on a cluster versus on a pod level. The Cluster
Autoscaler scales on node level targeting things like node pools or Virtual Machine
Scale. The scaling on the pod level can be achieved by using the Horizontal Pod
AutoScaler which scales on metrics like CPU or memory. By using KEDA, external
services can be used as triggers.

Autoscaling is provided in Function Apps in all three plans. However, the
consumption and premium plan use a different mechanism which reacts faster
than the App Service Plan.

4 Designing a scalable, high availability and future-proof platform for Cloud native compute

All differentiators are rated using a three-value scale. The values have
the following meaning:

• ‘+’ : feature is supported with no additional effort
• ‘o’ : feature is supported, but requires additional efforts in administration and configuration
• ‘–’ : feature is not supported or would requires tremendous additional efforts

Architecture

Development

Operations

Orchestration features for
multiple microservices
(high availability, recovery)

High compute power

Integration in Azure native services

Complex Deployments
e.g. rolling update)

Time-to-market

Application configuration
feature toggles)

Runtime restrictions

Portability (developed code)

Portability (platform)

State support

Monitoring

Costs

– +

– +

+

+

+

+

+ o

+

–

o

o (Possible by wrapping
into container)

o (Possible by wrapping
into container)

o (Starting point with
additional frameworks)

o (Possible but easier
supported with function apps)

o (Azure Monitor, Application
Insights and OSS components
like Prometheus can be used)

o (No costs for Kubernetes
orchestration control plane,
but no free tier)

+

+

+ (If below threshold
consumption)

– (If premium since
more expensive VMs
than Kubernetes)

– (Deployment slots
can support but do
not allow fine-grained
component control as
in Kubernetes)

o (App insights
required needs to be
created and linked)

Area Kubernetes
(Microservice Platform)

Function Apps
(Microservice)

Differentiator

5 Designing a scalable, high availability and future-proof platform for Cloud native compute

A clear platform indication can be given
if you have an edge case scenario that
is clearly small or complex. Complex
might refer to big computing power or
orchestration support in a full blown
microservice platform.

Function Apps are a very good
match for the small end, e.g. due to
a single application focus. Since they
maximize infrastructure abstraction,
they are very easy to set up with a
fast time-to-market. Certain features
such as state support and integration
with other Azure services are better
supported compared to Kubernetes.
Especially for test environments
where the call threshold is no problem,
they are a great leverage for saving
money. Here, the deployment slots
allow an A/B testing. The following
reasons can speak against functions.
Kubernetes needs not automatically to
be an alternative due to its additional
complexity:

• Function runtime restrictions

• Existing ecosystem/knowledge
 different from functions

• Portability

Kubernetes is clearly the winner
in complex scenarios since it comes
with a lot of built-in orchestration
functionalities and since it can be
designed more specifically on the user
needs. E.g. clusters can be designed to
use VM types with GPU acceleration
or other requirements and associate
them only to specific apps hosted on
the platform. Additionally, Kubernetes
enables much more mature
deployment options—for example, if
you need a platform which supports
A/B testing or a component wise
rolling update.

Kubernetes can be combined with
additional technologies such as KEDA
and DAPR that both support functions.
Supported scenarios in conjunction
with Function Apps and Kubernetes
will be discussed in detail in the next
chapter.

6 Designing a scalable, high availability and future-proof platform for Cloud native compute

The following figure illustrates major architectural components that are
used in both set-ups:

KEDA DAPR

Container

Container Orchestration

Your Function
Code

Azure Service
Bus Azure Function

Runtime

KEDA
Func

Extension

Kubernetes
KEDA

(Scalling)

Container

Container Orchestration

Azure Service
Bus

DAPR Func Extension

Your Function Code

Azure Function Runtime

DAPR (Distr. App Components)

Kubernetes and others

Can Kubernetes and function
apps work together?
KEDA is an open source, single-purpose
and lightweight component that can
be added into any Kubernetes cluster.
It works alongside the standard
Kubernetes components and enhances
the Horizontal Pod Autoscaler
functionality to scale container
instances. KEDA is designed to activate
and scale Kubernetes deployments
depending on the needed capacity
and triggered by event outside of the
Kubernetes cluster. KEDA acts as a
metrics adapter that forwards internal

or external metrics to the Horizontal
Pod Autoscaler to drive scale out.
Typical examples of triggering external
metrics include RabbitMQ and Azure
Service Bus etc.

DAPR is a portable, open source,
serverless and event-driven runtime
that makes it easy for developers to
build resilient, stateless and stateful
microservices that run on the cloud
and edge and embraces the diversity of
languages and developer frameworks
driven by Microsoft. DAPR addresses

developer needs or ‘application-
level constructs’ such as manage
state or to subscribe to a pub/sub
messaging system. It abstracts from
the underlying services implementing
these constructs. This applies for the
orchestration platform as well as the
application level constructs it provides.
Thus, a subscribe implementation
of a RabbitMQ-based publication
can be replaced with Azure Service
Bus without having to change the
application code.

7 Designing a scalable, high availability and future-proof platform for Cloud native compute

Summary

Both extend the Kubernetes as the
orchestration platform and the
function part to integrate with DAPR
and KEDA. In both cases, the function
needs to be containerized to be
executable under Kubernetes including
the Azure Function Runtime. The KEDA
function extension is only required if
you use durable functions. The two
pictures also illustrate the different
focus of the two frameworks. KEDA
concentrates on scaling container
instances. It is possible to run Function
Apps without KEDA but then you
lose the autoscaling feature provided
by the consumption/premium plan.
DAPR abstracts from application level
constructs such as the service bus and
Kubernetes as execution platform.

It cannot be executed on function
apps as a hosting environment and
the ‘DAPR Func Extension’ is not
yet released.

Running function apps unchanged in
Kubernetes including autoscaling is
therefore only possible with KEDA.
Known Function App features still
work under KEDA. This includes
bindings and state support by using
the durable functions extension for
KEDA. Also, other services frequently
used in conjunction with Function
Apps integrate well with Kubernetes.
This includes Azure app configuration
service and API management by
combining them with an ingress
controller within Kubernetes.

Starting with Function Apps and DAPR
is not possible since the extension is
not yet recommended for production,
and Azure Function Apps as a hosting
platform is not supported. However,
DAPR is a future way to plug-in
function code in Kubernetes, but it
requires a porting if you start with
Azure Function Apps. In most cases
the porting is straightforward since
comparable concepts, such as for
state management and binding,
exist. Differences only result from
different syntax or different involved
APIs. No counterpart exists for the
orchestration patterns provided by
durable functions such as fan in/out or
time based.

As illustrated, there is no single approach that addresses everything. When making the right choice, the starting point is to
determine the required level of complexity in terms of computing and orchestration support. Thanks to KEDA, Function Apps
can be a fast entry point even if the project switches to Kubernetes later on. Kubernetes is a portable container platform, but
the features you can use in conjunction with functions (State support or bindings targeting certain Azure services) are Azure
specific. On the other hand, DAPR does not support Function Apps as hosting platform, but aims higher in terms of portability.
Azure specifics regarding state support and bindings are hidden from the application code. Moreover, Functions in conjunction
with DAPR are not yet ready for production. However, creating distributed apps that abstract from Kubernetes and the
underlying application components are already possible.

8 Designing a scalable, high availability and future-proof platform for Cloud native compute

Used Resources
• Azure functions documentation: https://docs.microsoft.com/en-us/azure/azure-functions/

• API management documentation: https://docs.microsoft.com/en-us/azure/api-management/api-management-kubernetes

• Azure App Configuration: https://docs.microsoft.com/en-us/azure/azure-app-configuration
integrate-kubernetes-deployment-helm

• Kubernetes home: https://kubernetes.io/

• Azure Kubernetes Services: https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes

• DAPR Concept Overview: https://docs.dapr.io/concepts/overview/

• DAPR on Kubernetes: https://docs.dapr.io/operations/hosting/kubernetes/kubernetes-overview/

• Microsoft – Technical customer story on DAPR: https://customers.microsoft.com/en-gb
story/1335733425802443016-ignition-group-speeds-development-and-payment-processing-using-dapr-and-azure

• KEDA home: https://keda.sh/

• Azure Functions on Kubernetes with KEDA: https://docs.microsoft.com/en-us/azure/azure-functions
functions-kubernetes-keda

• Azure Functions on Kubernetes with KEDA (part 1): https://microsoft.github.io/AzureTipsAndTricks/blog/tip277.html

• Azure Functions on Kubernetes with KEDA (part 2): https://microsoft.github.io/AzureTipsAndTricks/blog/tip278.html

• Repo KEDA Func Extension: https://github.com/kedacore/keda-external-scaler-azure-durable-functions

• Repo DAPR Func Extension: https://github.com/dapr/azure-functions-extension.

About
Capgemini

Capgemini is a global leader in partnering with companies to transform and manage their business by
harnessing the power of technology. The Group is guided everyday by its purpose of unleashing human energy
through technology for an inclusive and sustainable future. It is a responsible and diverse organization of
290,000 team members in nearly 50 countries. With its strong 50 year heritage and deep industry expertise,
Capgemini is trusted by its clients to address the entire breadth of their business needs, from strategy and
design to operations, fueled by the fast evolving and innovative world of cloud, data, AI, connectivity, software,
digital engineering and platforms. The Group reported in 2020 global revenues of €16 billion.

Get the Future You Want | www.capgemini.com

Te
am

 N
am

e_
D

at
e_

D
es

ig
n

er

Copyright © 2021 Capgemini. All rights reserved.

Authors
Christian Weber
christian.a.weber@capgemini.com

Güncel Düzgün
guencel.duezguen@capgemini.com

Albrecht Schönfeld
albrecht.schoenfeld@capgemini.com

Co-authors
Andreas Mock
andreas.mock@microsoft.com

Christian Dennig
christian.dennig@microsoft.com

